Solutions of Equations in One Variable

The Bisection Method

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロト <四ト <注入 <注下 <注下 <

Introducing the Bisection Method

< 17 ▶

Introducing the Bisection Method

★ ∃ ► 4

4 A N

Introducing the Bisection Method

- Applying the Bisection Method
 - 4 Theoretical Result for the Bisection Method

- 2 Introducing the Bisection Method
- 3 Applying the Bisection Method
- 4 A Theoretical Result for the Bisection Method

< 6 b

Example

Theoretical Result

The Root-Finding Problem

A Zero of function f(x)

Numerical Analysis (Chapter 2)

イロト イヨト イヨト イヨ

A Zero of function f(x)

 We now consider one of the most basic problems of numerical approximation, namely the root-finding problem.

< 🗇 > < 🖻 > < 🖻

A Zero of function f(x)

- We now consider one of the most basic problems of numerical approximation, namely the root-finding problem.
- This process involves finding a root, or solution, of an equation of the form

$$f(x)=0$$

for a given function *f*.

A Zero of function f(x)

- We now consider one of the most basic problems of numerical approximation, namely the root-finding problem.
- This process involves finding a root, or solution, of an equation of the form

$$f(x)=0$$

for a given function *f*.

• A root of this equation is also called a zero of the function f.

Example

Theoretical Result

The Root-Finding Problem

Historical Note

Numerical Analysis (Chapter 2)

크

・ロト ・聞 ト ・ ヨト ・ ヨト

Historical Note

 The problem of finding an approximation to the root of an equation can be traced back at least to 1700 B.C.E.

A (10) > A (10) > A (10)

Historical Note

- The problem of finding an approximation to the root of an equation can be traced back at least to 1700 B.C.E.
- A cuneiform table in the Yale Babylonian Collection dating from that period gives a sexigesimal (base-60) number equivalent to

1.414222

as an approximation to

 $\sqrt{2}$

a result that is accurate to within 10^{-5} .

A B b A B b

A D M A A A M M

Introducing the Bisection Method

- 3 Applying the Bisection Method
- 4 A Theoretical Result for the Bisection Method

< 6 b

The Bisection Method

Overview

 We first consider the Bisection (Binary search) Method which is based on the Intermediate Value Theorem (IVT).

A (10) > A (10) > A (10)

The Bisection Method

Overview

- We first consider the Bisection (Binary search) Method which is based on the Intermediate Value Theorem (IVT).
- Suppose a continuous function *f*, defined on [*a*, *b*] is given with *f*(*a*) and *f*(*b*) of opposite sign.

The Bisection Method

Overview

- We first consider the Bisection (Binary search) Method which is based on the Intermediate Value Theorem (IVT).
- Suppose a continuous function *f*, defined on [*a*, *b*] is given with *f*(*a*) and *f*(*b*) of opposite sign.
- By the IVT, there exists a point p ∈ (a, b) for which f(p) = 0. In what follows, it will be assumed that the root in this interval is unique.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

Bisection Technique

Main Assumptions

Numerical Analysis (Chapter 2)

Main Assumptions

Suppose f is a continuous function defined on the interval [a, b], with f(a) and f(b) of opposite sign.

4 A N

→ ∃ →

Main Assumptions

- Suppose *f* is a continuous function defined on the interval [*a*, *b*], with *f*(*a*) and *f*(*b*) of opposite sign.
- The Intermediate Value Theorem implies that a number p exists in (a, b) with f(p) = 0.

(4) (5) (4) (5)

4 A N

Main Assumptions

- Suppose f is a continuous function defined on the interval [a, b], with f(a) and f(b) of opposite sign.
- The Intermediate Value Theorem implies that a number p exists in (a, b) with f(p) = 0.
- Although the procedure will work when there is more than one root in the interval (*a*, *b*), we assume for simplicity that the root in this interval is unique.

A D M A A A M M

Main Assumptions

- Suppose f is a continuous function defined on the interval [a, b], with f(a) and f(b) of opposite sign.
- The Intermediate Value Theorem implies that a number p exists in (a, b) with f(p) = 0.
- Although the procedure will work when there is more than one root in the interval (*a*, *b*), we assume for simplicity that the root in this interval is unique.
- The method calls for a repeated halving (or bisecting) of subintervals of [a, b] and, at each step, locating the half containing p.

Computational Steps

Numerical	Analy	vsis (Cha	oter	2)
-----------	-------	--------	-----	------	----

æ

イロト イヨト イヨト イヨト

Computational Steps

To begin, set $a_1 = a$ and $b_1 = b$, and let p_1 be the midpoint of [a, b]; that is,

$$b_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

э

Computational Steps

To begin, set $a_1 = a$ and $b_1 = b$, and let p_1 be the midpoint of [a, b]; that is,

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

• If $f(p_1) = 0$, then $p = p_1$, and we are done.

э

Computational Steps

To begin, set $a_1 = a$ and $b_1 = b$, and let p_1 be the midpoint of [a, b]; that is,

$$p_1 = a_1 + rac{b_1 - a_1}{2} = rac{a_1 + b_1}{2}.$$

- If $f(p_1) = 0$, then $p = p_1$, and we are done.
- If $f(p_1) \neq 0$, then $f(p_1)$ has the same sign as either $f(a_1)$ or $f(b_1)$.

э

Computational Steps

To begin, set $a_1 = a$ and $b_1 = b$, and let p_1 be the midpoint of [a, b]; that is,

$$p_1 = a_1 + rac{b_1 - a_1}{2} = rac{a_1 + b_1}{2}.$$

- If $f(p_1) = 0$, then $p = p_1$, and we are done.
- If f(p₁) ≠ 0, then f(p₁) has the same sign as either f(a₁) or f(b₁).
 ◊ If f(p₁) and f(a₁) have the same sign, p ∈ (p₁, b₁). Set a₂ = p₁ and b₂ = b₁.

< ロ > < 同 > < 回 > < 回 >

Computational Steps

To begin, set $a_1 = a$ and $b_1 = b$, and let p_1 be the midpoint of [a, b]; that is,

$$p_1 = a_1 + rac{b_1 - a_1}{2} = rac{a_1 + b_1}{2}.$$

- If $f(p_1) = 0$, then $p = p_1$, and we are done.
- If $f(p_1) \neq 0$, then $f(p_1)$ has the same sign as either $f(a_1)$ or $f(b_1)$.
 - If $f(p_1)$ and $f(a_1)$ have the same sign, $p \in (p_1, b_1)$. Set $a_2 = p_1$ and $b_2 = b_1$.
 - ◇ If $f(p_1)$ and $f(a_1)$ have opposite signs, $p \in (a_1, p_1)$. Set $a_2 = a_1$ and $b_2 = p_1$.

Then re-apply the process to the interval $[a_2, b_2]$, etc.

3

Numerical Analysis (Chapter 2)

Given the function *f* defined on [a,b] satisfying f(a)f(b) < 0.

イロト イポト イヨト イヨ

Given the function *f* defined on [a,b] satisfying f(a)f(b) < 0.

1. $a_1 = a, b_1 = b, p_0 = a;$

Numerical Analysis (Chapter 2)

- 1. $a_1 = a, b_1 = b, p_0 = a;$
- **2**. *i* = 1;

- 1. $a_1 = a, b_1 = b, p_0 = a;$
- **2**. *i* = **1**;
- **3**. $p_i = \frac{1}{2}(a_i + b_i);$

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

2. $i = 1;$
3. $p_i = \frac{1}{2} (a_i + b_i);$
4. If $|p_i - p_{i-1}| < \epsilon$ or $|f(p_i)| < \epsilon$ then 10.

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

3.
$$p_i = \frac{1}{2}(a_i + b_i);$$

4. If
$$|p_i - p_{i-1}| < \epsilon$$
 or $|f(p_i)| < \epsilon$ then 10;

5. If
$$f(p_i)f(a_i) > 0$$
, then 6;

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

3.
$$p_i = \frac{1}{2}(a_i + b_i);$$

4. If
$$|p_i - p_{i-1}| < \epsilon$$
 or $|f(p_i)| < \epsilon$ then 10;

5. If
$$f(p_i)f(a_i) > 0$$
, then 6;
If $f(p_i)f(a_i) < 0$, then 8;

Given the function *f* defined on [a,b] satisfying f(a)f(b) < 0.

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

3.
$$p_i = \frac{1}{2}(a_i + b_i);$$

4. If
$$|p_i - p_{i-1}| < \epsilon$$
 or $|f(p_i)| < \epsilon$ then 10;

5. If
$$f(p_i)f(a_i) > 0$$
, then 6;
If $f(p_i)f(a_i) < 0$, then 8;

6.
$$a_{i+1} = p_i, b_{i+1} = b_i;$$

Numerical Analysis (Chapter 2)

Given the function *f* defined on [a,b] satisfying f(a)f(b) < 0.

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

3.
$$p_i = \frac{1}{2}(a_i + b_i);$$

4. If
$$|p_i - p_{i-1}| < \epsilon$$
 or $|f(p_i)| < \epsilon$ then 10;

5. If
$$f(p_i)f(a_i) > 0$$
, then 6;
If $f(p_i)f(a_i) < 0$, then 8;

6.
$$a_{i+1} = p_i, b_{i+1} = b_i;$$

7.
$$i = i + 1$$
; go to 3;

Numerical Analysis (Chapter 2)

Given the function *f* defined on [a,b] satisfying f(a)f(b) < 0.

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

3.
$$p_i = \frac{1}{2}(a_i + b_i);$$

4. If
$$|p_i - p_{i-1}| < \epsilon$$
 or $|f(p_i)| < \epsilon$ then 10;

5. If
$$f(p_i)f(a_i) > 0$$
, then 6;
If $f(p_i)f(a_i) < 0$, then 8;

6.
$$a_{i+1} = p_i, b_{i+1} = b_i;$$

7.
$$i = i + 1$$
; go to 3;

8.
$$a_{i+1} = a_i; b_{i+1} = p_i;$$

Given the function *f* defined on [a,b] satisfying f(a)f(b) < 0.

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

3.
$$p_i = \frac{1}{2}(a_i + b_i);$$

4. If
$$|p_i - p_{i-1}| < \epsilon$$
 or $|f(p_i)| < \epsilon$ then 10;

5. If
$$f(p_i)f(a_i) > 0$$
, then 6;
If $f(p_i)f(a_i) < 0$, then 8;

6.
$$a_{i+1} = p_i, b_{i+1} = b_i;$$

7.
$$i = i + 1$$
; go to 3;

8.
$$a_{i+1} = a_i; b_{i+1} = p_i;$$

9.
$$i = i + 1$$
; go to 3;

Given the function *f* defined on [a,b] satisfying f(a)f(b) < 0.

1.
$$a_1 = a, b_1 = b, p_0 = a;$$

3.
$$p_i = \frac{1}{2}(a_i + b_i);$$

4. If
$$|p_i - p_{i-1}| < \epsilon$$
 or $|f(p_i)| < \epsilon$ then 10;

5. If
$$f(p_i)f(a_i) > 0$$
, then 6;
If $f(p_i)f(a_i) < 0$, then 8;

6.
$$a_{i+1} = p_i, b_{i+1} = b_i;$$

- 7. i = i + 1; go to 3;
- 8. $a_{i+1} = a_i; b_{i+1} = p_i;$
- 9. i = i + 1; go to 3;
- 10. End of Procedure.

Comment on Stopping Criteria for the Algorithm

Numerical Analysis (Chapter 2)

э

(日) (四) (日) (日) (日)

Comment on Stopping Criteria for the Algorithm

• Other stopping procedures can be applied in Step 4.

Numerical Analysis (Chapter 2)

э

ヘロト 人間 とくほとく ほど

Comment on Stopping Criteria for the Algorithm

- Other stopping procedures can be applied in Step 4.
- For example, we can select a tolerance *ϵ* > 0 and generate *p*₁,..., *p*_N until one of the following conditions is met:

$$|p_N - p_{N-1}| < \epsilon$$
 (1)

$$\frac{\boldsymbol{p}_N - \boldsymbol{p}_{N-1}|}{|\boldsymbol{p}_N|} < \epsilon, \quad \boldsymbol{p}_N \neq 0, \quad \text{or}$$
(2)

$$|f(p_N)| < \epsilon \tag{3}$$

Numerical Analysis (Chapter 2)

Comment on Stopping Criteria for the Algorithm

- Other stopping procedures can be applied in Step 4.
- For example, we can select a tolerance *ϵ* > 0 and generate *p*₁,..., *p*_N until one of the following conditions is met:

$$|p_N - p_{N-1}| < \epsilon \qquad (1)$$

$$\frac{p_N - p_{N-1}|}{|p_N|} < \epsilon, \quad p_N \neq 0, \quad \text{or}$$

$$|f(p_N)| < \epsilon$$
(2)

 Without additional knowledge about f or p, Inequality (2) is the best stopping criterion to apply because it comes closest to testing relative error.

Numerical Analysis (Chapter 2)

イロト イポト イヨト イヨト

Outline

Introducing the Bisection Method

4 A Theoretical Result for the Bisection Method

Numerical Analysis (Chapter 2)

The Bisection Method

R L Burden & J D Faires 13 / 32

< 6 b

Solving $f(x) = x^3 + 4x^2 - 10 = 0$

Example: The Bisction Method

Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1, 2] and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4} .

イロト イ団ト イヨト イヨト

Solving $f(x) = x^3 + 4x^2 - 10 = 0$

Example: The Bisction Method

Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1, 2] and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4} .

Relative Error Test

Note that, for this example, the iteration will be terminated when a bound for the relative error is less than 10^{-4} , implemented in the form:

$$rac{|p_n-p_{n-1}|}{|p_n|} < 10^{-4}.$$

Numerical Analysis (Chapter 2)

14/32

Solution

 Because f(1) = -5 and f(2) = 14 the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].

イロト イ理ト イヨト イヨト

Solution

- Because f(1) = -5 and f(2) = 14 the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].
- For the first iteration of the Bisection method we use the fact that at the midpoint of [1, 2] we have f(1.5) = 2.375 > 0.

Solution

- Because f(1) = -5 and f(2) = 14 the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].
- For the first iteration of the Bisection method we use the fact that at the midpoint of [1,2] we have f(1.5) = 2.375 > 0.
- This indicates that we should select the interval [1, 1.5] for our second iteration.

Solution

- Because f(1) = -5 and f(2) = 14 the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].
- For the first iteration of the Bisection method we use the fact that at the midpoint of [1, 2] we have f(1.5) = 2.375 > 0.
- This indicates that we should select the interval [1, 1.5] for our second iteration.
- Then we find that f(1.25) = -1.796875 so our new interval becomes [1.25, 1.5], whose midpoint is 1.375.

Solution

- Because f(1) = -5 and f(2) = 14 the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].
- For the first iteration of the Bisection method we use the fact that at the midpoint of [1, 2] we have f(1.5) = 2.375 > 0.
- This indicates that we should select the interval [1, 1.5] for our second iteration.
- Then we find that f(1.25) = -1.796875 so our new interval becomes [1.25, 1.5], whose midpoint is 1.375.
- Continuing in this manner gives the values shown in the following table.

Iter	an	bn	p _n	$f(a_n)$	$f(p_n)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333

Iter	an	b _n	p _n	$f(a_n)$	$f(p_n)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333
2	1.000000	1.500000	1.250000	-5.000	-1.797	0.20000

< 17 ▶

Iter	an	b _n	p _n	$f(a_n)$	$f(p_n)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333
2	1.000000	1.500000	1.250000	-5.000	-1.797	0.20000
3	1.250000	1.500000	1.375000	-1.797	0.162	0.09091

< 17 ▶

Iter	an	b _n	p _n	$f(a_n)$	$f(p_n)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333
2	1.000000	1.500000	1.250000	-5.000	-1.797	0.20000
3	1.250000	1.500000	1.375000	-1.797	0.162	0.09091
4	1.250000	1.375000	1.312500	-1.797	-0.848	0.04762
5	1.312500	1.375000	1.343750	-0.848	-0.351	0.02326
6	1.343750	1.375000	1.359375	-0.351	-0.096	0.01149
7	1.359375	1.375000	1.367188	-0.096	0.032	0.00571
8	1.359375	1.367188	1.363281	-0.096	-0.032	0.00287
9	1.363281	1.367188	1.365234	-0.032	0.000	0.00143
10	1.363281	1.365234	1.364258	-0.032	-0.016	0.00072
11	1.364258	1.365234	1.364746	-0.016	-0.008	0.00036
12	1.364746	1.365234	1.364990	-0.008	-0.004	0.00018
13	1.364990	1.365234	1.365112	-0.004	-0.002	0.00009

< 17 ▶

Solution (Cont'd)

Numerical Analysis (Chapter 2)

Solution (Cont'd)

 After 13 iterations, p₁₃ = 1.365112305 approximates the root p with an error

$$|p - p_{13}| < |b_{14} - a_{14}| = |1.3652344 - 1.3651123| = 0.0001221$$

Solution (Cont'd)

 After 13 iterations, p₁₃ = 1.365112305 approximates the root p with an error

$$|p - p_{13}| < |b_{14} - a_{14}| = |1.3652344 - 1.3651123| = 0.0001221$$

• Since $|a_{14}| < |p|$, we have

$$\frac{|\pmb{p}-\pmb{p}_{13}|}{|\pmb{p}|} < \frac{|\pmb{b}_{14}-\pmb{a}_{14}|}{|\pmb{a}_{14}|} \le 9.0 \times 10^{-5},$$

so the approximation is correct to at least within 10^{-4} .

Solution (Cont'd)

 After 13 iterations, p₁₃ = 1.365112305 approximates the root p with an error

$$|p - p_{13}| < |b_{14} - a_{14}| = |1.3652344 - 1.3651123| = 0.0001221$$

• Since $|a_{14}| < |p|$, we have

$$\frac{|\pmb{p}-\pmb{p}_{13}|}{|\pmb{p}|} < \frac{|\pmb{b}_{14}-\pmb{a}_{14}|}{|\pmb{a}_{14}|} \le 9.0 \times 10^{-5},$$

so the approximation is correct to at least within 10^{-4} .

• The correct value of p to nine decimal places is p = 1.365230013

Numerical Analysis (Chapter 2)

The Bisection Method

Outline

2 Introducing the Bisection Method

3 Applying the Bisection Method

A (10) > A (10) > A (10)

Theoretical Result for the Bisection Method

Theorem

Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n-p|\leq rac{b-a}{2^n},$$
 when $n\geq 1.$

Numerical Analysis (Chapter 2)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theoretical Result for the Bisection Method

Proof.

For each $n \ge 1$, we have

$$b_n-a_n=rac{1}{2^{n-1}}(b-a)$$
 and $p\in(a_n,b_n)$

イロト イ団ト イヨト イヨト

Theoretical Result for the Bisection Method

Proof.

For each $n \ge 1$, we have

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a)$$
 and $p \in (a_n, b_n)$.

Since $p_n = \frac{1}{2}(a_n + b_n)$ for all $n \ge 1$, it follows that

$$|p_n-p|\leq \frac{1}{2}(b_n-a_n)=\frac{b-a}{2^n}$$

Numerical Analysis (Chapter 2)

R L Burden & J D Faires 21 / 32

3

П

Theoretical Result for the Bisection Method

Rate of Convergence

Because

$$|p_n-p|\leq (b-a)\frac{1}{2^n},$$

the sequence $\{p_n\}_{n=1}^{\infty}$ converges to *p* with rate of convergence $O\left(\frac{1}{2^n}\right)$; that is,

$$p_n=p+O\left(rac{1}{2^n}
ight).$$

Numerical Analysis (Chapter 2)

R L Burden & J D Faires 22 / 32

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theoretical Result for the Bisection Method

Conservative Error Bound

Numerical Analysis (Chapter 2)

Conservative Error Bound

 It is important to realize that the theorem gives only a bound for approximation error and that this bound might be quite conservative.

Conservative Error Bound

- It is important to realize that the theorem gives only a bound for approximation error and that this bound might be quite conservative.
- For example, this bound applied to the earlier problem, namely where

$$f(x) = x^3 + 4x^2 - 10$$

ensures only that

$$|\textbf{\textit{p}}-\textbf{\textit{p}}_9| \leq \frac{2-1}{2^9} \approx 2 \times 10^{-3},$$

but the actual error is much smaller:

 $|p - p_9| = |1.365230013 - 1.365234375| \approx 4.4 \times 10^{-6}.$

Example: Using the Error Bound

Determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example: Using the Error Bound

Determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$.

Solution

• We we will use logarithms to find an integer N that satisfies

$$|p_N - p| \le 2^{-N}(b - a) = 2^{-N} < 10^{-3}$$

Example: Using the Error Bound

Determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$.

Solution

• We we will use logarithms to find an integer N that satisfies

$$|p_N - p| \le 2^{-N}(b - a) = 2^{-N} < 10^{-3}.$$

• Logarithms to any base would suffice, but we will use base-10 logarithms because the tolerance is given as a power of 10.

Numerical Analysis (Chapter 2)

The Bisection Method

Theoretical Result

Theoretical Result for the Bisection Method

Solution (Cont'd)

Numerical Analysis (Chapter 2)

Solution (Cont'd)

• Since $2^{-N} < 10^{-3}$ implies that $\log_{10} 2^{-N} < \log_{10} 10^{-3} = -3$, we have 3

$$-N\log_{10}2 < -3$$
 and $N > \frac{3}{\log_{10}2} \approx 9.96$

- Since $2^{-N} < 10^{-3}$ implies that $\log_{10} 2^{-N} < \log_{10} 10^{-3} = -3$, we have $-N \log_{10} 2 < -3$ and $N > \frac{3}{\log_{10} 2} \approx 9.96$.
- Hence, ten iterations will ensure an approximation accurate to within 10⁻³.

- Since $2^{-N} < 10^{-3}$ implies that $\log_{10} 2^{-N} < \log_{10} 10^{-3} = -3$, we have $-N \log_{10} 2 < -3$ and $N > \frac{3}{\log_{10} 2} \approx 9.96$.
- Hence, ten iterations will ensure an approximation accurate to within 10⁻³.
- The earlier numerical results show that the value of $p_9 = 1.365234375$ is accurate to within 10^{-4} .

- Since $2^{-N} < 10^{-3}$ implies that $\log_{10} 2^{-N} < \log_{10} 10^{-3} = -3$, we have $-N \log_{10} 2 < -3$ and $N > \frac{3}{\log_{10} 2} \approx 9.96$.
- Hence, ten iterations will ensure an approximation accurate to within 10⁻³.
- The earlier numerical results show that the value of $p_9 = 1.365234375$ is accurate to within 10^{-4} .
- Again, it is important to keep in mind that the error analysis gives only a bound for the number of iterations.

- Since $2^{-N} < 10^{-3}$ implies that $\log_{10} 2^{-N} < \log_{10} 10^{-3} = -3$, we have $-N \log_{10} 2 < -3$ and $N > \frac{3}{\log_{10} 2} \approx 9.96$.
- Hence, ten iterations will ensure an approximation accurate to within 10⁻³.
- The earlier numerical results show that the value of $p_9 = 1.365234375$ is accurate to within 10^{-4} .
- Again, it is important to keep in mind that the error analysis gives only a bound for the number of iterations.
- In many cases, this bound is much larger than the actual number required.

Final Remarks

Numerical Analysis (Chapter 2)

æ

<ロト <回ト < 回ト < 回

Final Remarks

• The Bisection Method has a number of significant drawbacks.

Numerical Analysis (Chapter 2)

Final Remarks

- The Bisection Method has a number of significant drawbacks.
- Firstly it is very slow to converge in that N may become quite large before p - p_N becomes sufficiently small.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Final Remarks

- The Bisection Method has a number of significant drawbacks.
- Firstly it is very slow to converge in that N may become quite large before p - p_N becomes sufficiently small.
- Also it is possible that a good intermediate approximation may be inadvertently discarded.

A D b 4 A b

Final Remarks

- The Bisection Method has a number of significant drawbacks.
- Firstly it is very slow to converge in that N may become quite large before p - p_N becomes sufficiently small.
- Also it is possible that a good intermediate approximation may be inadvertently discarded.
- It will always converge to a solution however and, for this reason, is often used to provide a good initial approximation for a more efficient procedure.

26/32

< ロ > < 同 > < 回 > < 回 >

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reference Material

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Intermediate Value Theorem: Illustration (1/3)

Consider an arbitray function f(x) on [a, b]:

Intermediate Value Theorem: Illustration (2/3)

We are given a number *K* such that $K \in [f(a), f(b)]$.

<ロト <回ト < 国ト < 国ト = 国

Intermediate Value Theorem: Illustration (3/3)

If $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists a number $c \in (a, b)$ for which f(c) = K.

Return to Bisection Method

If $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists a number $c \in (a, b)$ for which f(c) = K.

(The diagram shows one of 3 possibilities for this function and interval.)

Return to Bisection Method Example