Solutions of Equations in One Variable

The Bisection Method

Numerical Analysis (9th Edition)
R L Burden \& J D Faires

Beamer Presentation Slides
prepared by
John Carroll
Dublin City University

(C) 2011 Brooks/Cole, Cengage Learning

Outline

(1) Context: The Root-Finding Problem

Outline

(1) Context: The Root-Finding Problem

(2) Introducing the Bisection Method

Outline

(1) Context: The Root-Finding Problem
(2) Introducing the Bisection Method
(3) Applying the Bisection Method

Outline

(1) Context: The Root-Finding Problem
(2) Introducing the Bisection Method
(3) Applying the Bisection Method
(4) A Theoretical Result for the Bisection Method

Outline

(1) Context: The Root-Finding Problem

(2) Introducing the Bisection Method
(3) Applying the Bisection Method

4 A Theoretical Result for the Bisection Method

The Root-Finding Problem

A Zero of function $f(x)$

The Root-Finding Problem

A Zero of function $f(x)$

- We now consider one of the most basic problems of numerical approximation, namely the root-finding problem.

The Root-Finding Problem

A Zero of function $f(x)$

- We now consider one of the most basic problems of numerical approximation, namely the root-finding problem.
- This process involves finding a root, or solution, of an equation of the form

$$
f(x)=0
$$

for a given function f.

The Root-Finding Problem

A Zero of function $f(x)$

- We now consider one of the most basic problems of numerical approximation, namely the root-finding problem.
- This process involves finding a root, or solution, of an equation of the form

$$
f(x)=0
$$

for a given function f.

- A root of this equation is also called a zero of the function f.

The Root-Finding Problem

Historical Note

The Root-Finding Problem

Historical Note

- The problem of finding an approximation to the root of an equation can be traced back at least to 1700 B.C.E.

The Root-Finding Problem

Historical Note

- The problem of finding an approximation to the root of an equation can be traced back at least to 1700 B.C.E.
- A cuneiform table in the Yale Babylonian Collection dating from that period gives a sexigesimal (base-60) number equivalent to
1.414222
as an approximation to
$\sqrt{2}$
a result that is accurate to within 10^{-5}.

Outline

(1) Context: The Root-Finding Problem

(2) Introducing the Bisection Method
(3) Applying the Bisection Method

4. A Theoretical Result for the Bisection Method

The Bisection Method

Overview

- We first consider the Bisection (Binary search) Method which is based on the Intermediate Value Theorem (IVT).

The Bisection Method

Overview

- We first consider the Bisection (Binary search) Method which is based on the Intermediate Value Theorem (IVT).
- Suppose a continuous function f, defined on $[a, b]$ is given with $f(a)$ and $f(b)$ of opposite sign.

The Bisection Method

Overview

- We first consider the Bisection (Binary search) Method which is based on the Intermediate Value Theorem (IVT).
- Suppose a continuous function f, defined on $[a, b]$ is given with $f(a)$ and $f(b)$ of opposite sign.
- By the IVT, there exists a point $p \in(a, b)$ for which $f(p)=0$. In what follows, it will be assumed that the root in this interval is unique.

Bisection Technique

Main Assumptions

Bisection Technique

Main Assumptions

- Suppose f is a continuous function defined on the interval $[a, b]$, with $f(a)$ and $f(b)$ of opposite sign.

Bisection Technique

Main Assumptions

- Suppose f is a continuous function defined on the interval $[a, b]$, with $f(a)$ and $f(b)$ of opposite sign.
- The Intermediate Value Theorem implies that a number p exists in (a, b) with $f(p)=0$.

Bisection Technique

Main Assumptions

- Suppose f is a continuous function defined on the interval $[a, b]$, with $f(a)$ and $f(b)$ of opposite sign.
- The Intermediate Value Theorem implies that a number p exists in (a, b) with $f(p)=0$.
- Although the procedure will work when there is more than one root in the interval (a, b), we assume for simplicity that the root in this interval is unique.

Bisection Technique

Main Assumptions

- Suppose f is a continuous function defined on the interval $[a, b]$, with $f(a)$ and $f(b)$ of opposite sign.
- The Intermediate Value Theorem implies that a number p exists in (a, b) with $f(p)=0$.
- Although the procedure will work when there is more than one root in the interval (a, b), we assume for simplicity that the root in this interval is unique.
- The method calls for a repeated halving (or bisecting) of subintervals of $[a, b]$ and, at each step, locating the half containing p.

Bisection Technique

Computational Steps

Bisection Technique

Computational Steps

To begin, set $a_{1}=a$ and $b_{1}=b$, and let p_{1} be the midpoint of $[a, b]$; that is,

$$
p_{1}=a_{1}+\frac{b_{1}-a_{1}}{2}=\frac{a_{1}+b_{1}}{2}
$$

Bisection Technique

Computational Steps

To begin, set $a_{1}=a$ and $b_{1}=b$, and let p_{1} be the midpoint of $[a, b]$; that is,

$$
p_{1}=a_{1}+\frac{b_{1}-a_{1}}{2}=\frac{a_{1}+b_{1}}{2}
$$

- If $f\left(p_{1}\right)=0$, then $p=p_{1}$, and we are done.

Bisection Technique

Computational Steps

To begin, set $a_{1}=a$ and $b_{1}=b$, and let p_{1} be the midpoint of $[a, b]$; that is,

$$
p_{1}=a_{1}+\frac{b_{1}-a_{1}}{2}=\frac{a_{1}+b_{1}}{2}
$$

- If $f\left(p_{1}\right)=0$, then $p=p_{1}$, and we are done.
- If $f\left(p_{1}\right) \neq 0$, then $f\left(p_{1}\right)$ has the same sign as either $f\left(a_{1}\right)$ or $f\left(b_{1}\right)$.

Bisection Technique

Computational Steps

To begin, set $a_{1}=a$ and $b_{1}=b$, and let p_{1} be the midpoint of $[a, b]$; that is,

$$
p_{1}=a_{1}+\frac{b_{1}-a_{1}}{2}=\frac{a_{1}+b_{1}}{2}
$$

- If $f\left(p_{1}\right)=0$, then $p=p_{1}$, and we are done.
- If $f\left(p_{1}\right) \neq 0$, then $f\left(p_{1}\right)$ has the same sign as either $f\left(a_{1}\right)$ or $f\left(b_{1}\right)$. \diamond If $f\left(p_{1}\right)$ and $f\left(a_{1}\right)$ have the same sign, $p \in\left(p_{1}, b_{1}\right)$. Set $a_{2}=p_{1}$ and $b_{2}=b_{1}$.

Bisection Technique

Computational Steps

To begin, set $a_{1}=a$ and $b_{1}=b$, and let p_{1} be the midpoint of $[a, b]$; that is,

$$
p_{1}=a_{1}+\frac{b_{1}-a_{1}}{2}=\frac{a_{1}+b_{1}}{2} .
$$

- If $f\left(p_{1}\right)=0$, then $p=p_{1}$, and we are done.
- If $f\left(p_{1}\right) \neq 0$, then $f\left(p_{1}\right)$ has the same sign as either $f\left(a_{1}\right)$ or $f\left(b_{1}\right)$.
\diamond If $f\left(p_{1}\right)$ and $f\left(a_{1}\right)$ have the same sign, $p \in\left(p_{1}, b_{1}\right)$. Set $a_{2}=p_{1}$ and $b_{2}=b_{1}$.
\diamond If $f\left(p_{1}\right)$ and $f\left(a_{1}\right)$ have opposite signs, $p \in\left(a_{1}, p_{1}\right)$. Set $a_{2}=a_{1}$ and $b_{2}=p_{1}$.
Then re-apply the process to the interval $\left[a_{2}, b_{2}\right]$, etc.

The Bisection Method to solve $f(x)=0$

Interval Halving to Bracket the Root

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[\mathrm{a}, \mathrm{b}]$ satisfying $f(a) f(b)<0$.

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[\mathrm{a}, \mathrm{b}]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;
5. If $f\left(p_{i}\right) f\left(a_{i}\right)>0$, then 6 ;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;
5. If $f\left(p_{i}\right) f\left(a_{i}\right)>0$, then 6 ;

If $f\left(p_{i}\right) f\left(a_{i}\right)<0$, then 8 ;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;
5. If $f\left(p_{i}\right) f\left(a_{i}\right)>0$, then 6 ;

If $f\left(p_{i}\right) f\left(a_{i}\right)<0$, then 8 ;
6. $a_{i+1}=p_{i}, b_{i+1}=b_{i}$;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;
5. If $f\left(p_{i}\right) f\left(a_{i}\right)>0$, then 6 ;

If $f\left(p_{i}\right) f\left(a_{i}\right)<0$, then 8 ;
6. $a_{i+1}=p_{i}, b_{i+1}=b_{i}$;
7. $i=i+1$; go to 3 ;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[a, b]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;
5. If $f\left(p_{i}\right) f\left(a_{i}\right)>0$, then 6 ;

If $f\left(p_{i}\right) f\left(a_{i}\right)<0$, then 8 ;
6. $a_{i+1}=p_{i}, b_{i+1}=b_{i}$;
7. $i=i+1$; go to 3 ;
8. $a_{i+1}=a_{i} ; b_{i+1}=p_{i}$;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[\mathrm{a}, \mathrm{b}]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;
5. If $f\left(p_{i}\right) f\left(a_{i}\right)>0$, then 6 ;

If $f\left(p_{i}\right) f\left(a_{i}\right)<0$, then 8 ;
6. $a_{i+1}=p_{i}, b_{i+1}=b_{i}$;
7. $i=i+1$; go to 3 ;
8. $a_{i+1}=a_{i} ; b_{i+1}=p_{i}$;
9. $i=i+1$; go to 3 ;

The Bisection Method to solve $f(x)=0$

Given the function f defined on $[\mathrm{a}, \mathrm{b}]$ satisfying $f(a) f(b)<0$.

1. $a_{1}=a, b_{1}=b, p_{0}=a$;
2. $i=1$;
3. $p_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$;
4. If $\left|p_{i}-p_{i-1}\right|<\epsilon$ or $\left|f\left(p_{i}\right)\right|<\epsilon$ then 10 ;
5. If $f\left(p_{i}\right) f\left(a_{i}\right)>0$, then 6 ;

If $f\left(p_{i}\right) f\left(a_{i}\right)<0$, then 8 ;
6. $a_{i+1}=p_{i}, b_{i+1}=b_{i}$;
7. $i=i+1$; go to 3 ;
8. $a_{i+1}=a_{i} ; b_{i+1}=p_{i}$;
9. $i=i+1$; go to 3 ;
10. End of Procedure.

The Bisection Method

Comment on Stopping Criteria for the Algorithm

The Bisection Method

Comment on Stopping Criteria for the Algorithm

- Other stopping procedures can be applied in Step 4.

The Bisection Method

Comment on Stopping Criteria for the Algorithm

- Other stopping procedures can be applied in Step 4.
- For example, we can select a tolerance $\epsilon>0$ and generate p_{1}, \ldots, p_{N} until one of the following conditions is met:

$$
\begin{align*}
\left|p_{N}-p_{N-1}\right| & <\epsilon \tag{1}\\
\frac{\left|p_{N}-p_{N-1}\right|}{\left|p_{N}\right|} & <\epsilon, \quad p_{N} \neq 0, \quad \text { or } \tag{2}\\
\left|f\left(p_{N}\right)\right| & <\epsilon \tag{3}
\end{align*}
$$

The Bisection Method

Comment on Stopping Criteria for the Algorithm

- Other stopping procedures can be applied in Step 4.
- For example, we can select a tolerance $\epsilon>0$ and generate p_{1}, \ldots, p_{N} until one of the following conditions is met:

$$
\begin{align*}
\left|p_{N}-p_{N-1}\right| & <\epsilon \tag{1}\\
\frac{\left|p_{N}-p_{N-1}\right|}{\left|p_{N}\right|} & <\epsilon, \quad p_{N} \neq 0, \quad \text { or } \tag{2}\\
\left|f\left(p_{N}\right)\right| & <\epsilon \tag{3}
\end{align*}
$$

- Without additional knowledge about f or p, Inequality (2) is the best stopping criterion to apply because it comes closest to testing relative error.

Outline

(1) Context: The Root-Finding Problem
(2) Introducing the Bisection Method
(3) Applying the Bisection Method
4. A Theoretical Result for the Bisection Method

Solving $f(x)=x^{3}+4 x^{2}-10=0$

Example: The Bisction Method

Show that $f(x)=x^{3}+4 x^{2}-10=0$ has a root in [1,2] and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4}.

Solving $f(x)=x^{3}+4 x^{2}-10=0$

Example: The Bisction Method

Show that $f(x)=x^{3}+4 x^{2}-10=0$ has a root in [1,2] and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4}.

Relative Error Test

Note that, for this example, the iteration will be terminated when a bound for the relative error is less than 10^{-4}, implemented in the form:

$$
\frac{\left|p_{n}-p_{n-1}\right|}{\left|p_{n}\right|}<10^{-4} .
$$

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution

- Because $f(1)=-5$ and $f(2)=14$ the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].

```
    IVT
```


Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution

- Because $f(1)=-5$ and $f(2)=14$ the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].

```
IVT
```

- For the first iteration of the Bisection method we use the fact that at the midpoint of $[1,2]$ we have $f(1.5)=2.375>0$.

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution

- Because $f(1)=-5$ and $f(2)=14$ the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].
- For the first iteration of the Bisection method we use the fact that at the midpoint of $[1,2]$ we have $f(1.5)=2.375>0$.
- This indicates that we should select the interval $[1,1.5]$ for our second iteration.

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution

- Because $f(1)=-5$ and $f(2)=14$ the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].
- For the first iteration of the Bisection method we use the fact that at the midpoint of $[1,2]$ we have $f(1.5)=2.375>0$.
- This indicates that we should select the interval $[1,1.5]$ for our second iteration.
- Then we find that $f(1.25)=-1.796875$ so our new interval becomes $[1.25,1.5]$, whose midpoint is 1.375 .

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution

- Because $f(1)=-5$ and $f(2)=14$ the Intermediate Value Theorem ensures that this continuous function has a root in [1,2].
- IVT
- For the first iteration of the Bisection method we use the fact that at the midpoint of $[1,2]$ we have $f(1.5)=2.375>0$.
- This indicates that we should select the interval $[1,1.5]$ for our second iteration.
- Then we find that $f(1.25)=-1.796875$ so our new interval becomes $[1.25,1.5]$, whose midpoint is 1.375 .
- Continuing in this manner gives the values shown in the following table.

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Iter	a_{n}	b_{n}	p_{n}	$f\left(a_{n}\right)$	$f\left(p_{n}\right)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Iter	a_{n}	b_{n}	p_{n}	$f\left(a_{n}\right)$	$f\left(p_{n}\right)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333
2	1.000000	1.500000	1.250000	-5.000	-1.797	0.20000

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Iter	a_{n}	b_{n}	p_{n}	$f\left(a_{n}\right)$	$f\left(p_{n}\right)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333
2	1.000000	1.500000	1.250000	-5.000	-1.797	0.20000
3	1.250000	1.500000	1.375000	-1.797	0.162	0.09091

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Iter	a_{n}	b_{n}	p_{n}	$f\left(a_{n}\right)$	$f\left(p_{n}\right)$	RelErr
1	1.000000	2.000000	1.500000	-5.000	2.375	0.33333
2	1.000000	1.500000	1.250000	-5.000	-1.797	0.20000
3	1.250000	1.500000	1.375000	-1.797	0.162	0.09091
4	1.250000	1.375000	1.312500	-1.797	-0.848	0.04762
5	1.312500	1.375000	1.343750	-0.848	-0.351	0.02326
6	1.343750	1.375000	1.359375	-0.351	-0.096	0.01149
7	1.359375	1.375000	1.367188	-0.096	0.032	0.00571
8	1.359375	1.367188	1.363281	-0.096	-0.032	0.00287
9	1.363281	1.367188	1.365234	-0.032	0.000	0.00143
10	1.363281	1.365234	1.364258	-0.032	-0.016	0.00072
11	1.364258	1.365234	1.364746	-0.016	-0.008	0.00036
12	1.364746	1.365234	1.364990	-0.008	-0.004	0.00018
13	1.364990	1.365234	1.365112	-0.004	-0.002	0.00009

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution (Cont'd)

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution (Cont'd)

- After 13 iterations, $p_{13}=1.365112305$ approximates the root p with an error

$$
\left|p-p_{13}\right|<\left|b_{14}-a_{14}\right|=|1.3652344-1.3651123|=0.0001221
$$

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution (Cont'd)

- After 13 iterations, $p_{13}=1.365112305$ approximates the root p with an error

$$
\left|p-p_{13}\right|<\left|b_{14}-a_{14}\right|=|1.3652344-1.3651123|=0.0001221
$$

- Since $\left|a_{14}\right|<|p|$, we have

$$
\frac{\left|p-p_{13}\right|}{|p|}<\frac{\left|b_{14}-a_{14}\right|}{\left|a_{14}\right|} \leq 9.0 \times 10^{-5}
$$

so the approximation is correct to at least within 10^{-4}.

Bisection Method applied to $f(x)=x^{3}+4 x^{2}-10$

Solution (Cont'd)

- After 13 iterations, $p_{13}=1.365112305$ approximates the root p with an error

$$
\left|p-p_{13}\right|<\left|b_{14}-a_{14}\right|=|1.3652344-1.3651123|=0.0001221
$$

- Since $\left|a_{14}\right|<|p|$, we have

$$
\frac{\left|p-p_{13}\right|}{|p|}<\frac{\left|b_{14}-a_{14}\right|}{\left|a_{14}\right|} \leq 9.0 \times 10^{-5}
$$

so the approximation is correct to at least within 10^{-4}.

- The correct value of p to nine decimal places is $p=1.365230013$

4 iteration(s) of the bisection method applied to

$$
f(x)=x^{3}+4 x^{2}-10
$$

with initial points $a=1.25$ and $b=1.5$

Outline

(1) Context: The Root-Finding Problem

(2) Introducing the Bisection Method

(3) Applying the Bisection Method

4 A Theoretical Result for the Bisection Method

Theoretical Result for the Bisection Method

Theorem

Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b)<0$. The Bisection method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ approximating a zero p of f with

$$
\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}, \quad \text { when } n \geq 1 .
$$

Theoretical Result for the Bisection Method

Proof.

For each $n \geq 1$, we have

$$
b_{n}-a_{n}=\frac{1}{2^{n-1}}(b-a) \quad \text { and } \quad p \in\left(a_{n}, b_{n}\right) .
$$

Theoretical Result for the Bisection Method

Proof.

For each $n \geq 1$, we have

$$
b_{n}-a_{n}=\frac{1}{2^{n-1}}(b-a) \quad \text { and } \quad p \in\left(a_{n}, b_{n}\right) .
$$

Since $p_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)$ for all $n \geq 1$, it follows that

$$
\left|p_{n}-p\right| \leq \frac{1}{2}\left(b_{n}-a_{n}\right)=\frac{b-a}{2^{n}} .
$$

Theoretical Result for the Bisection Method

Rate of Convergence

Because

$$
\left|p_{n}-p\right| \leq(b-a) \frac{1}{2^{n}}
$$

the sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges to p with rate of convergence $O\left(\frac{1}{2^{n}}\right)$; that is,

$$
p_{n}=p+O\left(\frac{1}{2^{n}}\right) .
$$

Theoretical Result for the Bisection Method

Conservative Error Bound

Theoretical Result for the Bisection Method

Conservative Error Bound

- It is important to realize that the theorem gives only a bound for approximation error and that this bound might be quite conservative.

Theoretical Result for the Bisection Method

Conservative Error Bound

- It is important to realize that the theorem gives only a bound for approximation error and that this bound might be quite conservative.
- For example, this bound applied to the earlier problem, namely where

$$
f(x)=x^{3}+4 x^{2}-10
$$

ensures only that

$$
\left|p-p_{9}\right| \leq \frac{2-1}{2^{9}} \approx 2 \times 10^{-3},
$$

but the actual error is much smaller:

$$
\left|p-p_{9}\right|=|1.365230013-1.365234375| \approx 4.4 \times 10^{-6} .
$$

Theoretical Result for the Bisection Method

Example: Using the Error Bound

Determine the number of iterations necessary to solve
$f(x)=x^{3}+4 x^{2}-10=0$ with accuracy 10^{-3} using $a_{1}=1$ and $b_{1}=2$.

Theoretical Result for the Bisection Method

Example: Using the Error Bound

Determine the number of iterations necessary to solve $f(x)=x^{3}+4 x^{2}-10=0$ with accuracy 10^{-3} using $a_{1}=1$ and $b_{1}=2$.

Solution

- We we will use logarithms to find an integer N that satisfies

$$
\left|p_{N}-p\right| \leq 2^{-N}(b-a)=2^{-N}<10^{-3}
$$

Theoretical Result for the Bisection Method

Example: Using the Error Bound

Determine the number of iterations necessary to solve $f(x)=x^{3}+4 x^{2}-10=0$ with accuracy 10^{-3} using $a_{1}=1$ and $b_{1}=2$.

Solution

- We we will use logarithms to find an integer N that satisfies

$$
\left|p_{N}-p\right| \leq 2^{-N}(b-a)=2^{-N}<10^{-3} .
$$

- Logarithms to any base would suffice, but we will use base-10 logarithms because the tolerance is given as a power of 10 .

Theoretical Result for the Bisection Method

Solution (Cont'd)

Theoretical Result for the Bisection Method

Solution (Cont'd)

- Since $2^{-N}<10^{-3}$ implies that $\log _{10} 2^{-N}<\log _{10} 10^{-3}=-3$, we have

$$
-N \log _{10} 2<-3 \quad \text { and } \quad N>\frac{3}{\log _{10} 2} \approx 9.96
$$

Theoretical Result for the Bisection Method

Solution (Cont'd)

- Since $2^{-N}<10^{-3}$ implies that $\log _{10} 2^{-N}<\log _{10} 10^{-3}=-3$, we have

$$
-N \log _{10} 2<-3 \quad \text { and } \quad N>\frac{3}{\log _{10} 2} \approx 9.96
$$

- Hence, ten iterations will ensure an approximation accurate to within 10^{-3}.

Theoretical Result for the Bisection Method

Solution (Cont'd)

- Since $2^{-N}<10^{-3}$ implies that $\log _{10} 2^{-N}<\log _{10} 10^{-3}=-3$, we have

$$
-N \log _{10} 2<-3 \quad \text { and } \quad N>\frac{3}{\log _{10} 2} \approx 9.96
$$

- Hence, ten iterations will ensure an approximation accurate to within 10^{-3}.
- The earlier numerical results show that the value of $p_{9}=1.365234375$ is accurate to within 10^{-4}.

Theoretical Result for the Bisection Method

Solution (Cont'd)

- Since $2^{-N}<10^{-3}$ implies that $\log _{10} 2^{-N}<\log _{10} 10^{-3}=-3$, we have

$$
-N \log _{10} 2<-3 \quad \text { and } \quad N>\frac{3}{\log _{10} 2} \approx 9.96
$$

- Hence, ten iterations will ensure an approximation accurate to within 10^{-3}.
- The earlier numerical results show that the value of $p_{9}=1.365234375$ is accurate to within 10^{-4}.
- Again, it is important to keep in mind that the error analysis gives only a bound for the number of iterations.

Theoretical Result for the Bisection Method

Solution (Cont'd)

- Since $2^{-N}<10^{-3}$ implies that $\log _{10} 2^{-N}<\log _{10} 10^{-3}=-3$, we have

$$
-N \log _{10} 2<-3 \quad \text { and } \quad N>\frac{3}{\log _{10} 2} \approx 9.96
$$

- Hence, ten iterations will ensure an approximation accurate to within 10^{-3}.
- The earlier numerical results show that the value of $p_{9}=1.365234375$ is accurate to within 10^{-4}.
- Again, it is important to keep in mind that the error analysis gives only a bound for the number of iterations.
- In many cases, this bound is much larger than the actual number required.

The Bisection Method

Final Remarks

The Bisection Method

Final Remarks

- The Bisection Method has a number of significant drawbacks.

The Bisection Method

Final Remarks

- The Bisection Method has a number of significant drawbacks.
- Firstly it is very slow to converge in that N may become quite large before $p-p_{N}$ becomes sufficiently small.

The Bisection Method

Final Remarks

- The Bisection Method has a number of significant drawbacks.
- Firstly it is very slow to converge in that N may become quite large before $p-p_{N}$ becomes sufficiently small.
- Also it is possible that a good intermediate approximation may be inadvertently discarded.

The Bisection Method

Final Remarks

- The Bisection Method has a number of significant drawbacks.
- Firstly it is very slow to converge in that N may become quite large before $p-p_{N}$ becomes sufficiently small.
- Also it is possible that a good intermediate approximation may be inadvertently discarded.
- It will always converge to a solution however and, for this reason, is often used to provide a good initial approximation for a more efficient procedure.

Questions?

Reference Material

Intermediate Value Theorem: Illustration (1/3)

Consider an arbitray function $f(x)$ on $[a, b]$:

Intermediate Value Theorem: Illustration (2/3)

We are given a number K such that $K \in[f(a), f(b)]$.

Intermediate Value Theorem: Illustration (3/3)

If $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there exists a number $c \in(a, b)$ for which $f(c)=K$.

Intermediate Value Theorem

If $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there exists a number $c \in(a, b)$ for which $f(c)=K$.

(The diagram shows one of 3 possibilities for this function and interval.)

